University of Antwerp SuPAR | Sustainable Pavements and Asphalt Research

How data can help plan for lower carbon roads: Using IT to improve the quality of asphalt and to deliver input to Building Information Modelling (BIM)

> Sharing Best Practice Nov 2nd 2023 Prof. Dr. Ing. Wim Van den bergh

Linking sustainability, data-driven road management and research

Case in Flanders: ROAD_IT

Sustainability

- Challenge 21st century: from durability to sustainability
- FHWA (2014):A sustainable pavement is one that achieves its specific engineering goals, while, on a broader scale, (1) meets basic human needs, (2) uses resources effectively, and (3) preserves/restores surrounding ecosystems.
- Sustainability is context sensitive and thus the approach taken is not universal, but rather unique for each pavement application

Sustainability

Context sensitive:

- Materials, processes, use phase, re-use ...
 - Less new materials (recycling or other materials flow), optimization of transport, less energy and improve quality
- Guidelines and evaluation: to proof and compare
 - On paper: EAPA, PIARC, EU,...
 - Tools: Edgar, Dubocalc, LCA PAV
 - Cases: Impuls program, RejuveBIT, ...
- Multi/interdisciplinary and complex approach

Sustainability challenges

- Main barriers to be solved:
 - Which parameters have the highest impact on "sustainability"
 - initially, in time and circularity
 - variability
 - Time urgency: data today will be used in 10-50 years: vision on future use of bitumen?
 - Management of all data
- Preliminary needs:
 - Tools to optimize, manage, see trends,...
 - Acceleration in the implementation process and approach (to get the data ^(c))

Next step: digitization of pavement service life University of Antwerp

BIM-environment!

Digital data acquisition is feasible to support and/or take smart/intelligent decisions

- Machine learning
- Neural networks
- Possibilities:

...

- Actual adjustments in processes
- Detection of trends in data
- Optimization of materials, processes
- Predictions and modelling
- Health, environmental impact

Impact-likelihood matrix of new technologies

Source: Shaping the Future of Construction

Let's take a look at a current project

• ROAD-IT: first steps and implemention

ROAD_IT: case 1 (2)

Optimizing logistic process asphalt production and constructing process

Result: location and time relation between lorry and finisher Calculate efficiency, truck management, temperature Mixture verification: go/no-go on site Speed of finisher can be adopted to truck arrivals

Technical and transport data are gps-related and stored in a database of the road manager. Each paved quantity from one truck is located and described (material passport and laying parameters)

• Track and trace

			WITOS® PAVING JOBSIT						
agbate	hes					-			
Code	Naam	status	Start sta	Linde sta	Menglabriek	en a tot hoev	totale di	Ad hoc	
		· opg		0.188	0/1	235.66	03:06		
	Ordertaag 1 T Jo	· 000			0/1			100	
		* opg			0/1			nee	
	(Indeedon a to be					\$33.06		meie	
		- ODA							

University of Antwerp SuPAR I Sustainable Pavements and Asphalt Research 0

2 036

0

xplor

ROAD_IT: Case 2 (2)

Continuous monitoring homogeneity after the finisher

umec

IDLab embracing a better life

During asphalt laying and compaction process:

- direct impact on durability of the compacted asphalt: intervention for rollers is possible ٠ After asphalt construction:
- data-analyse: evaluation, tender specifications, area with good/bad compaction ٠

0

MI

6)

1

M2

3

For important – high risk roads: IR-line scanner and Smart compaction are mandatory

🖉 WITOS Paving Analysis /V02.07.00@10.210.68.1:16041 //wbbrun

_ 8 ×

12.41 0 Fre-ALC: NOT THE OWNER OF THE Contrast. 10 (Mar 10) **Automa** 54 m OF Sciences Addition wanted as No. PROF. utomatic EVIB 212 # 100 mar 106°c F7 0,4mm BOMAG 10cm--5cm 0-5cm Sec. Sec. Frank 510 F11 F12 F13 ESC Enter For important – high risk roads: IR-line scanner and Smart compaction are mandatory

BCM 05

University of Antwerp SuPAR I Sustainable Pavements and Asphalt Research

reports •

	CCC - Do	CCC - Documentation					
	GPS - Coversheet						
escription		Stored data					
		from	Northin	g: 56857	700		
Project	proefvak bevrijdingsdok	to	Easting Northin): 31 591 g: 5686	1501 700		
Client Contractor Start - Enddate Comment		Overall surface Processed surface docomented from documented until	Easting 140000 8606 19/06/2 8/04/20): 31 592)0 2009 13:)19 11:4	m ² m ² 01:54 4:16		
Lot	stadsbader		AVG	Min	Max	1	
Client	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Roller pass	9	1	36	1	
Contractor		Amplitude [mm]	0.3	0.1	0.8]	
Start - Enddate	-	Frequency [Hz]	44	27	48]	
Comment		Velocity [km/h]	4.6	0.3	10.7	1	
laver	onderlaag 2	Statistic data	20 30	1 3	%	1	
Number of laver	2	Roller pass within set range	720	5	7 %	1	
Laver type	-	Default minimum	17	4	0 %	1	
Subbase		AVG-value	9			•	
Thickness of layer		Increase	3	9	6		
Comment		Standard deviation	6				
		Filter					
Field	1						
P1 Northing P1 Easting P2 Northing P2 Easting	5685700.000 31 591500.710 5886700.000 31 592900.000						
Comment		Transformation					
		Coordinate system	UTM co	oordinate	es (northern	hemisp	
		Reference system	WGS84	4 (World	-wide GPS)	, geoce	
oller parameters		Meridian strin	Native	ve meridian strip			

BW 174 AP AM 101 870 94 1167

Asphalt Manager

9300

170

29

Page 1

2

Model

Serial No.

Weight [kg]

Load [kg/cm]

Coversheet

Page Overview

Contents

Vibration system

Width of drum [cm]

BW 174 AP AM

101 870 92 1115

Asphalt Manager

9300

170

29

ROAD_IT: Case 3

Data reporting of a construction site

Project & mixture specifications

Construction site ID							
Layer type	Toplayer						
Mixture type	SMA-C						
Accepted temp. rang	120-180°C						

Totals today									
# Trucks	Mixture	Total mass	Avg. mass/truck						
3	SMA-C	79.2	26.4						

Transport specifications

Truck ID Mixture		e Mass	Mass	Mass	Mass	Mass	Mass	Mass	Mass	Mass	Mass	Mass	Mass	Temp.	т	ime	(Coupling	De	coupling	Accepted?
		(Tons)		Plant	Site	Time	GPS	Time	GPS												
1-KTL-629	SMA-C	26.4	N.A.	9h33	10h04	10h09	51.189969	10h22	51.189910	Accepted											
							3.844474		3.844773												
1-GPJ-553	SMA-C	25.5	N.A.	9h50	10h11	10h25	51.189897	10h34	51.189857	Accepted											
							3.844858		3.845037												
1-KPO-110	SMA-C	27.3	N.A.	10h10	10h35	10h38	51.189841	10h50	51.189782	Accepted											
							3.845105		3.845357												

imec

embracing a better life

For a whole or a part of a construction site: Quantities, period, number of trucks, ID of trucks, mixture verification Contractor, suppliers and road manager

09/25/2017

09/25/2017

09/25/2017

09/25/2017

09/25/2017

09/25/2017

13:48:09

13:49:15

13:50:29

13:53:08

13:54:10

13:13

14:19

15:33

18:12

19:14

P1

P1

Ρ1

Ρ1

P1

92

95

94

90

91

1958

1961

2058

2070

2072

6

6

6

10

14

14

Extension

MIT-SCAN-T3 Precise and nondestructive measurement of asphalt and concrete layer thickness in compliance with TP D-StB 12

Smart compaction systems Layer thickness measurements Density measurements

Strain measurements

ROAD_IT: implementation

- Now: Used by Port of Antwerp-Bruges, Flemish Road Agency and City of Antwerp as quality parameter (part of procurement)
- Near Future: correlation with
 - performance in time
 - other road performance tests
- Goal: Detection of
 - Adverse conditions
 - Bad/Excellent compositions/combinations
 - E.g. 75% of SMA 14 PmB RA used on secondary road/compacted at 135C and 8 passes fail/work. For same conditions only 10% AC10 fails/works...
 - Step by step resilient structures by measuring impact parameters

Materials

Energy

Safety

Efficiency

intern

extern

Future ROAD IT

BIM: Building information modelling

SAPPR: road design

Objectives and Research Needs

- Objectives: (1) evaluate data sources and accessibility and (2) discuss legal aspects for further research and valorization
- Research at UAntwerp: (1) model the behavior of the road infrastructure (visco-elastic plastic deformation model); (2) correlate actual performance/service life with predicted performance/ service life; (3) evaluate impacts of climate change on road structures; (4) assess sustainability and circularity (Green Public Procurement)

of a Smart Asphalt Pavement performance Response model Climate change, traffic, ageing, healing, Fatigue,... Historical and actual data

SSMARAGD: circular use

- Data-driven analytic modelling from nano to meta scale (SSMARAGD)
 - LCCA, LCA -social, economical, environmental impact (e.g. VOC)

Development of a Smart Selection Model for innovative Application of Reclaimed Asphalt Granulate in road Design SSMARAGD Historical and actual data

Conclusions

- Technology to generate store data is available
- Use of data as
 - Input/parameters in GPP tools, LCA/LCCA databases
 - Predictive models (PMS, insurance, warranty period)
 - Research and development
- Road structure: not only for asphalt, for all layers
- Properties of Bitumen (virgin, ageing process)
 - Crucial
 - Open database?
 - Future use of bitumen?
- Collaboration and coordination between disciplines

Prof. Wim Van den bergh

<u>Wim.vandenbergh@uantwerpen.be</u> Sustainable Pavements and Asphalt Research SuPAR University of Antwerp <u>https://www.uantwerpen.be/en/research-groups/supar/</u>

University of Antwerp SuPAR | Sustainable Pavements and Asphalt Research

Asphalt Innovation Symposium

December 13th 2023, Antwerp

